A New Efficient Approximation
Algorithm for Chromatic Number

Guillermo De Ita!, Meliza Contreras? Eriea Vera!

! Universidad Auténoma de Puebla, deita@cs.buap.mx, ea.veraOhotmail.com
? Universidad Angelépolis, mel_222810hotmail .mx

Abstract. We design a new approximation polynomial-time algorithm
for the graph coloring problem. Our proposal is based on selecting, in
iterative manner, a critical vertex » of the graph. The criterion to select
is based on choose the node with maximum degree and with maximum
degree of its neighborhood into the set of vertices composing odd cycles.
The algorithm consists of two embedded loops. While in the internal
loop a critical node is selected to be colored and it is deleted as well as
its upon edges from the current graph. The external loop controls when
there is not possible to select more vertices and, while remains odd cycles
in the current graph, new colors are used. The stop criterion to fnish
the two loops is when the current subgraph is bipartite.

Our algorithm establishes an average number of (V46 + 1 + 26 — 1)/2
colors for approximate the chromatic number of any graph G, § being
the initial average degree of the input graph G.

1 Introduction

The problem to determine the minimum value of colors needed for coloring a
graph is a NP-complete problem, even for graphs G with degree (maximum de-
gree) A(G) = 3. A consequence of this is that there is not a complete theoretical
characterization of colorability (8].

‘The graph coloring problem is an abstraction of certain types of scheduling
problems. In the graph k-coloring problem we wish to assign each vertex one
of k colors such that every pair of vertices connected with an edge are assigned
different colors. The chromatic number of a graph G denoted by x(G) is the
minimum value k such that G has a k-coloring. This problem arises in a host
of applications, and was one of the 22 NP-complete problems on Karp's list.
Subsequently, much effort was spent on trying to design efficient approximation
algorithms, namely, given a k-colorable graph to try to color it with as few colors
as possible [1].

One of the first bound to color a 3-colorable graph was established by Wigder-
son [13], he showed how to color 3-colorable graphs with at most 3. [v/n] colors,
where n is the number of nodes on the graph. Blum and Karger [3] applied

semidefinite programming (SDP) to improve this bound to O(n%/14), where the

notation O is used to suppress polylogarithmic factors. Recently, Arora, et. al.
(1) using stronger SDPs have improved the bound to O(n%2!11),

© S. Torres, I. Lopez, H. Calvo. (Eds.)
Advances in Computer Science and Engineering
Research in Computing Science 27, 2007, pp. 113-122

Received 15/02/07
Accepted 08/04/07
Final version 22/04/07

114 De Ita G., Contreras M. and Vera E.

On the other hand, no polynomial-time algorithm is known for coloring any
graph where the ratio of the number of colors used to the optimal number is
bounded by a constant. In fact, guaranteeing a small constant bound on the
ratio is NP-Hard [2]. For example, is known that if there were an approximation
polynomial-time algorithm that uses fewer than (4/3)x(G) colors, then the 3-
colorability problem could be solved in polynomial time and then, NP = P.

For unrestricted number of colors we know that a graph coloring can not be
approximated with ratio n¢ for some €; the current value for the exponent ¢ is
1/10 [4]. However, the upper bound that is achieved by the known approximation
algorithm, i.e. the proposal in [1], is still far to the theoretical bound.

We present in this article, a polynomial-time algorithm which uses an average

number of (V48 +1+26— 1)/2 colors for approximate x(G), 6 being the initial
average degree of the input graph G.

2 Preliminaries

Let G = (V, E) be an undirected graph with vertex set (or nodes set) V and set of
edges E. Two vertices v and w are called adjacent if there is an edge {v,w} € E,
joining them. Sometimes, we denote with E(G) and V(G) rather than E and
V to emphasize that these are the edges and vertex sets of a particular graph
G. The Neighborhood of = € V is N(z) = {y € V:{z,y} € E} and its closed
neighborhood is N (z)U {z} which is denoted by N|[z]. Note that v is not in N (v).
We denote the cardinality of a set A, by |A|. Given a graph G = (V, E), the
x), is | N (z)|- The size of the neighborhood

degree of a vertex T € V, denoted by &(1
of z, 8(N(x)), is S(N (2)) = 2yeN(z) &(y). The maximum degree of G or just
the degree of G is A(G) = maz{é(z) : ¢ € V}, while we denote With 6,min(G) =

min{6(z) :z € V} and with 6(G) = (2| E|)/|V| the average degree of the graph.

Given a subset of vertices S € V the subgraph of G denoted by G|S has
vertex set S and set of edges E(G|S) = {{u,v} € E : u,v € S}. To G|S is called
the subgraph of G induced by S. We write G — S to denote the graph G|(V — S).
The subgraph induced by N (v) is denoted as H(v) = G |N (v) which has to N(v)
as the set of nodes and all edges upon them.

A path from a vertex v to a vertex w in a graph is a sequence of edges:
YoV1, V12, - - - , Un—1Vn SUCh that v = o and v, = w and vy is adjacent to vg4,
for 0 < k < n and, the length of the path is n. A simple path is a path such that
Vo, V1, - - -, Vn—1, Un are all distinct. A cycle is just a nonempty path such that
the first and last vertices are identical, and a simple cycle is a cycle in which no
vertex is repeated, except that the first and last vertices are identical.

A k-cycle is a cycle of length k, that is, a k-cycle has k edges. A cycle of odd
length is called an odd cycle, while a cycle of even length is called an even cycle.
A graph G is acyclic if it has not cycles.

A complete graph of n nodes has n(n+1)/2 distinct edges, we denote K, the
complete graph of n nodes. A graph G is a regular graph if all vertices have the

same degree, G is k — regular if it is regular, of degree k.

A New Efficient Approximation Algorithm for Chromatic Number 115

A connected component of G is a maximal induced subgraph of G, that is,
a connected subgraph which is not a proper subgraph of any other connected
subgraph of G. Note that, in a connected component, for every pair of its vertices

z,y, there is a path from z to y. If an acyclic graph is also connected, then it is
called a free tree.

A coloring of a graph G = (V, E) is an assignment of colors to its vertices. A
coloring is proper if adjacent vertices always have different colors. An k-coloring
of G is a mapping from V into the set {1,2,...,m} of k ”colors”. The chromatic
number of G denoted by x(G) is the minimum value k such that G has a proper
k-coloring. If x(G) = k, G is then said to be k-chromatic. The problem to
determine the value x(G) is polynomial computable when x(G) < 2, but when
x(G) = 3, the problem becomes NP-complete, even for graphs G with degree
A(G) =2 3.

Given a graph G = (V, E), S C V is an independent set in G if for whatever

two vertices v, v2 in S, {v;,v2} € E. Let I(G) be the set of all independent
sets of G. An independent set S € I(G) is mazimal if it is not a subset of any

larger independent set and, it is mazimum if it has the largest size among all
independent sets in I(G).

Let G = (V, E) be a graph, G is a bipartite graph if V can be partitioned
into two subsets U; and U, called partite sets, such that every edge of G joins
a vertex of U; and a vertex of Us.

If G = (V,E) is a k-chromatic graph, then it is possible to partition V into
k independent sets Vi, V5, ..., Vi, called color classes, but it is not possible to
partition V into k — 1 independent sets.

3 Polynomial Coloring Procedures

The main class of graphs which is known to be colored in polynomial time is the
class of bipartite graphs.

Lemma 1 A graph G has chromatic number 2 if and only if G is bipartite.

Since the partite set U; can be colored with the first color while the other partite
set Uy is coloring with the second color. Furthermore, as the bipartite property

can be recognized in polynomial time, then a 2-colorable graph can be recognized
in polynomial time, based on the following property.

Lemma 2 A graph G is bipartite if and only if G contains no odd cycles.

Given an input connected graph G = (V, E), if we apply the depth-first search
over G starting the search, for example with the node v € V of minimum degree,
we obtain a depth-first graph Tg, which we will denote as T = df s(G). G
is an acyclic graph, we call to Tg the spanning tree of G, and in this case, we
can color Tg with only two colors. We color the vertices in T by levels, in

alternating way between the two colors in accordance with the change of level,
that is, all vertices in same level have same color.

116 Delta G., Contreras M. and Vera E.

The depth-first search also allow us to detect the odd cycles of a graph. We
present, in a schematic way, a recursive procedure for the depth-first search. We
show in the following procedure, the different status of a node during the search
At the beginning, every node is not discovered and, when a node u as well as all

its adjacent nodes have been visited then u is marked as finished.

Procedure dfs(v)

1. Mark v as discovered

2. For each node w € N(v)
(a) If w is not discovered then df s(w)

(b) else mark the edge {w,v} as a back edge

3. Mark v as finished
4. Returns
The procedure dfs runs in time O(m + n) where n and m are the number

es and the number of edges of the input graph G, respectively. Thus, dfs

of nod
dure over the length of G which can be used for coloring a

is a linear-time proce
graph.
dge that we find during the depth-first search marks the beginning

Each back e
a base cycle (or fundamental cycle). Let C' = {C1,C,...,Ci} be

and the end of
the set of fundamental cycles found during the depth-first search. Each back-edge

¢c; € Tg determines a base cycle C; € C, i =1,..., k.
.clic or contains only even fundamental cycles, then Tg is bipartite

If T is acy
and it is colorable with just two colors. Like the case when T¢ is a tree, we could
by levels assigning to each node of the same level

advance visiting nodes in Tg
the same color. The two colors are applied in an alternating way in accordance

with the change of level.
Ci and Cj from C, if C; and Cj share common

Given two distinct base cycles
edges we say that both cycles are intersected, that is, C; & C; conforms a new
cycle, where © denotes the operation or-exclusive between the set of edges of

the cycles. If the cycles C; and C; have no common nodes nor edges then we
say that both cycles are independent, that is, C; ® C; = C; U Cj. While if the
cycles have not common edges but maybe they have a common node, we say
that both cycles are non-intersected. Note that a pair of independent cycles are

non-intersected.
Also is known, that any simple odd cycle request of three colors to be col-

ored. Then, we can recognize in polynomial time a set of graphs which are
3_colorable. We present in the following section the prerequisites so that a graph

is 3-colorable.

3.1 A 3-Coloring Algorithm

Theorem 1 If T, the resulting depth-first graph of an input graph G contains
only non-intersected base cycles, then x(G) £ 3 and a 8-coloring is done in

linear time.

A New Efficient Approximation Algorithm for Chromatic Number 117

Proof: we present as proof the following linear time algorithm.

In order to recognize if a graph G is 3-colorable, we apply Tg = df s(G) and
test if T has one of the following base cases:

1. If Tg has not odd fundamental cycles then G is 2-colorable. This option
considers the case where T is a bipartite graph.
2.

If any base cycle in Tg includes odd cycles, but such odd cycles are non-
intersected with any other cycle of T then Tg is 3-colorable.
We can color T by levels, but using the third color for coloring each end-

node of every odd cycle. The end-node of a cycle is the node where the back
edge was found during the depth-first search.

We color embedded cycles from the most intern to extern cycle. When we
start to color a new cycle, we use a different color to their neighboring nodes
(at most two neighboring nodes), since we consider that only the nodes in
the internal cycles have already been colored. In this case, we can consider to

Tg like an instance of a Series-Parallel graph, which is know that is colorable
in polynomial time [9].

Then, if the topological structure of the input graph G is whatever of the
latter basic cases, then G is 3-colorable and it is coloring in polynomial time.
Thus, the class of graphs that they have the previous basic topologies, conforms
us a new polynomial class of graphs for the 3-colorable problem.

We present in the following section a polynomial time algorithm based on
the selection of the critical nodes to approximate the chromatic number.

4 A Polynomial Approximation Algorithm for the
Chromatic Number of a Graph

First, we review some results that we will use to design our proposal, as well as
the knowing upper bounds for the chromatic number of a graph.

Lemma 3 If G is a connected non-regular graph, then x(G) < A(G).
If G is regular, then x(G) < A(G) + 1.

Proof. First, assume that G is non-regular, choose a vertex v; of minimum
degree in V as the root of a spanning tree. We traverse the resulting graph in
preorder (first the child nodes and after the parent node). When each vertex
v; # v comes to be colored, the parent of »; has not already been colored.
Therefore at most §(v;) — 1 adjacent vertices have already been colored. Hence
x(vi) £ A(G). When v, comes to be colored, all adjacent vertices have already
been colored. Since §(v1) < A(G), we conclude that x(v;) < A(G). Hence
x(G) < A(G).

If G is a regular graph, then the proof proceeds as above, except that x(v1) <

A(G) + 1. The conclusion is followed. Notice that if G is regular, only one vertex
needs to use color A(G) + 1.

118 De lta G., Contreras M. and Vera E.

If a depth-first search is applied for ordering the nodes of a complete graph
Kn, and after we color the nodes of the spanning tree in preorder, then it could

be shown that it is needed to use exactly n colors.

Given a graph G = (V, E) and a node v € V, the subgraph induced by N (V)
is denoted as H(v); recalls that it consists of N(V'), the neighborhood of v, and

all edges in E between vertices of N(v).
Lemma 4 If G is k-colorable, then for any v € V, H(v) s (k — 1)-colorable.

Since 2-colorable graphs can be identified and colored (with only two colors)

in polynomial time, the neighborhood of any vertex in a 3-colorable graph can
be colored with two colors in polynomial time.

Let G = (V, E) be a graph with x(G) = m. If we remove an edge {u, v} from

G, there are two possibilities, either x(G—{u,v}) = mor x(G—{u,v}) =m-—1.

In the latter case, we say that the edge {u, v} is critical. If a node u has a critical
tend the definition and the node u is critical too.

edge upon it, then we ex
A graph G is critical if x(G — {,v}) = x(G) — 1 for all edges {u,v} € E. If

x(G) = m, we say that G is m-critical.
It is easy to see that every graph G contains a critical subgraph. If x(G —

{u,v}) = x(G) for some edge {u,v} € E, we can remove such edge. Continuing
deleting edges like this until every edge is critical. The result is a critical sub-

graph.
According to those latter results, we design the following algorithm.
Let G = (V, E) be a graph with [V| = n, |E| = m, and let T be the graph

generated for the depth-first search over G.

The general strategy of our proposal for coloring G consist on:
First: To recognize the general topology of G. This is done for applying a depth-

first search on the graph.
Second: Test if G can be colored with two colors, a linear procedure is executed

for detecting this condition
Third: If G is not 2-colorable, we detect the node v which is part of an odd cycle

and with maximum conflicting for coloring v and the odd cycles in G. That is

done by executed a polynomial time procedure.
Fourth: We color v with the active color, v and its edges upon it are deleted

from the current graph. And the control is returned to the first step.

This procedure is executed in iterative way while the current graph can not
be recognized as a bipartite graph. We show the pseudo-code of this proposal.

Procedure Select_Candidate_Node(Tg,NV)
Input: T is a subgraph, NV is the neighborhood over the vertices

that can not be colorable with color &

A New Efficient Approximation Algorithm for Chromatic Number 119

Output: v € V a vertex to be coloreable
Procedure

Vertices = minus(Tg, NV); /* Computes Vertices = V(Tg) — NV */
choose v € Vertices such that /* v is a critical node */

degree(v) and degree(NV (v)) are maximum over the set of odd cycles nodes
Otherwise /* If every odd cycle was covered by NV */

choose v € Vertices such that /* v has maximum degree in Tg */

If (maximumOver.T'G(degree(v),Tg) == true) then

Return v

qompENrs

Algorithm Seek_Chromatic_Number(G)
Input: G a non directed graph

Output: An approximate value for x(G)
Procedure

k=3; /* Starting with the class color k = 3 */

Te = dfs(G); /* The nodes of the graph are ordered */

1) while(is-bipartite(Tg)==false) /* While there is an odd cycle in G */
{NV =0; /* NV is the neighborhood for the class color k */

2) while (is_subset(NV, V(Tg))==true)

a) { v = Select_Candidate_Node(Tg, NV);

b) Color(v) = k; delete(Tg,v);
add(NV,N(v)); /* NV = NV UN(®)

c) H =Max_Component(T¢); /*If T¢ is disconnected then consider
the component with maximum value for x(7g)*/

d) T = dfs(H); /* Maintain ordered the remaining nodes */
} k443

}

3) Call 2-Coloring(T:); /*At the end, the remaining graph is 2-colorable*/
Return

The procedure Seek_Chromatic_.Number consist of two embedded loops. In
each iteration of the external loop, an independent set of class color k is built.
This class color is formed by the critical nodes of the current graph and compose
an independent set Ij of the graph. Each node in a independent set I; is colored
with the color j + 2, like it is showed in first and second graph in Figure 2.

The internal loop is applied to find each critical node v of the current graph
and for building the neighborhood NV (v) for the independent set I; where v is,
like it is showed in second graph in Figure 1. When a critical node is detected,
it is colored and deleted from the graph as well as incident edges upon it; as Tg
is changing in each iteration of the internal loop, it might even be disconnected,
then it is necessary to order the nodes using the depth-first search again.

The external loop finishes when the remaining subgraph T is bipartite, and
then T is 2-colorable, like it is showed in third graph in Figure 2.

120 De Ita G., Contreras M. and Vera E.

Fig. 2. Three iterations of the main loop

5 Complexity Analysis

The most expensive operation into the internal loop (step 2) is to determine the
critical node v to be colored, line (a). This step is performed in time O(m * n),
and as that loop iterates at most n times, then the complexity time of the in-
ternal loop is O(m * n?). While the external loop (step 1) is executed (m — n)
times in the worst case (when all cycle in G is odd), and the most expensive
instruction is the internal loop, so the total complexity time of the procedure is

polynomial and it is O((m —n) *x m n?).

We focus ourselves on determining the average number of colors used by our

algorithm, rather than the worst-case behavior. Let rel =m —n be the variable
used to denote the relation between the number of edges and nodes in whatever

subgraph. The variable rel denotes the number of cycles minus 1 in a connected
graph. We know that for any graph H, if m < n then H is bipartite or H is a
simple odd cycle and then H is 3-colorable. We analyze the value that rel; takes
in each subgraph T, C G generated after of the iteration ¢ by the main loop
(external loop), and let K; be the independent set built in such iteration.

Given an initial graph G = (V, E) with |V| = ng and |E| = mo in each
iteration of the main loop the number of nodes and edges are updated as: n;41 =
n; — | Ki| and m;y; = m; — |E(K:)|, since in each iteration the nodes in K; are
deleted to the current graph as well as its incident edges: E(X;).

A New Efficient Approximation Algorithm for Chromatic Number 121

Let Gi4+1 = Gi — K; be the remaining subgraph generated from G; after to
finish the iteration ¢ into the main loop. As each K; is an independent set of
Gi, there are not edges of G; connecting any two nodes of K;. Furthermore, the
edges in E(K;) cover every node of Gj, that is, E(K;) is an edge cover of G;,
then we have that |E(K;)| > n; and the number of remaining edges in G;4; is
miy1 = m; — |E(K;)| = mi — n;, so m; — n; is an upper bound for m;4;.

The behavior between the number of edges and number of nodes for each
subgraph G;, hands:

relg = mp — Ng.-

rely =m; —ny < (mo—‘-’!o)—m = (mo—‘ng)-(no—lKol)=m0—2no+|Ko|.

rely = mg—n2 < (M1 —n1) —(n1—|K1|) = mo—2no+|Ko| — (no — | Ko| — | K1) =
my — 3ng + 2| Ko| + |K1|.

rely = m3 —n3 < (M2 — n2) — (n2 — |K2|) = mo — 3no + 2|Ko| + |K1| — (no —
| Ko| — | K| — | K2|) = mo — 4no + 3| Ko| + 2|K1| + | K2|.

rely < mo — (k + 1)no + k|Ko| + (k — 1)|K1| +... + | Kk—y].

An average value for |K;|,i =0,...,k — 1 is computed for considering that
2 ek, 0(v) = le}___{_‘l 0(G:) = ni, where §(G;) is the average degree of the sub-
graph G;, and then |K;| - 6(G;) > n; so |K;| 2> n:/86(G;:) =~ n/é, being & the

average degree of the initial graph G. Thus, we can approximate the value |K;|
by n/é.

Then, rely < mo—(k+1)-ng+ Zf__fol(k —1)-(n/é) = mo— (k+1)n+ (n/d)-
((k)(k +1)/2). And we want to know the average number of iterations for the
external loop until arrive that rel; < 0. So, we want to determine the average
value for k where rely < 0, that is, mo + (k(k + 1)/2) - (n/d) < (k + 1)no.

Let m = mg and n = ng. As m = (§ - n)/2 then

[(6-n)/2+ (n/6) - (k(k+1))/2]/n < k+1,s0 6+ (k(k+1))/6 < 2- (k +1).
Thus,

§/(k+1)+k/6 <2 (1)

In order to solve (1) we express the equation in terms to the variable k,
obtaining: 0 < —(1/8)k% + (2 — (1/6))k + (2 — §) and factoring the polynomial
in k, we have: 0 < —(1/8)(k+ (V46 +1+1—-26)/2)(k — (V46 + 1+ 26 —1)/2),
and the interval where the value for k hands the equation (1), is: —(v40+ 1+
1-26)/2 < k < (V46 +1—1+2§)/2). Thus, the maximum value for k¥ handing
(1) and which represents the average number of colors used for our algorithm,

is: x(G) =~ (V46 +1+26 —1)/2.

Hence our procedure uses 5(6) colors (where the notation O is used to sup-
press polylogarithmic factors) for coloring the input graph G, being & the initial
average degree of the graph G.

122 De Ita G., Contreras M. and Vera E.

6 Conclusions

First, we show a new polynomial class of graphs for the 3-coloring problem which
includes to the Series-Parallel graphs like instances of this class. After, we show
a new approximation polynomial-time algorithm for determining the chromatic
number of a graph G. Our proposal is based on selecting, in iterative manner, a
critical vertex v of the graph. The criterion to select is based on choose the node
with maximum degree and with maximum degree of its neighborhood into the

set of vertices composing odd cycles.
Our algorithm establishes an average number of (v/46 + 1+ 25 — 1)/2 colors

for approximate the chromatic number x(G) for any input graph G, being J the
average degree of the graph G. Hence our procedure uses O(d) colors for coloring
an input graph G.

References
1. S. Arora, E. Chlamtac, M. Charikar, New Approximation Guarantee for Chromatic
Proceedings STOC 2006, May 2006.

Number,
2. Baase S., Gelder A. V., Computer algorithms: Introduction to Design & Analysis
Addison Wesley, 2000.)
3/14)_coloring algorithm for 3-colorable graphs, Infor-

3. Blum A., Karger D., An O(n
mation Processing Letters, 61(1):49-53, 1997
Bellare M., Sudan M., Improved Non-approximability results, Draft, 1993.
5. Dyer M., Greenhill C., Some #P-completeness Proofs for Coulorings and Indepen-

. dent Sets, Research Report Series, University of Leeds, 1997.
6. Dyer M., Greenhill C., Corrigendum: The complexity of counting graph homomor-

phism, RSA: Random Structures and Algortihms, 25:346-352,2004.
7. Greenhill Catherine , The complexity of counting colourings and independent sets

graphs and hypergraphs, Computational Complezity, 1999.

-

in sparse

8. Kocay W., Kreher D., Graphs, Algorithms, and Optmization, Chapman & Hall/CRC
Press, 2005. .

9. Johnson D., The NP-Completeness Column: An Ongoing Guide, Jour. of Algorithms

6,434-451, 1985.
10. Roth D., On the hardness of approximate reasoning, Artificial Intelligence 82,

(1996), 273-302.
11. Russ B., Randomized Algorithms: Approzimation, Generation, and Counting, Dis-

tingished dissertations Springer, 2001.
12. Vadhan Salil P., The complexity of Counting in Sparse, Regular, and Planar

Graphs, SIAM Journal on Computing, Vol. 31, No.2, (2001), 398-427.
13. Wigderson A. Improving the performance guarantee of approximate graph coloring,

Jour. of the ACM,30 (4):729-735, 1983.

